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Abstract--A Prandtl transformation method is applied to study the natural convection of non-Newtonian 
fluids along a wavy vertical plate in the presence of a magnetic field. A simple transformation is proposed, 
to transform the governing equations into the boundary layer equations, and solved numerically by the 
cubic spline approximation. A simple coordinate transformation is employed to transform the complex 
wavy surface to a vertical fiat plate for a constant wall temperature by the numerical method. The effects 
of the magnetic field parameter, the wavy geometry and the non-Newtonian nature of the fluids on the 
flow characteristics and heat transfer are discussed in detail. It is found that the action of the magnetic 
field is to decelerate the flow, thus decreasing the Nusselt number. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The laminar natural convection of a non-Newtonian 
fluid has been presented by many investigators 
because of its considerable practical applications. 
Since most of the non-Newtonian fluids are highly 
viscous and have large Prandtl number, similarity 
solutions have been obtained for such a fluid under 
various thermal boundary conditions [1-4]. The com- 
parisons of the experimental data of Reilly et al. [5] 
and Dale and Emery [6] and the similarity results of 
Acrivos [1] and Chen [4] were good. A review of 
this subject was given by Shenoy and Mashelkar [7]. 
Natural convection of non-Newtonian fluids over an 
external surface was reported by Som and Chen [8], 
Kleinstreuer et al. [9], and Huang et al. [10]. All the 
previous analyses and experimental studies are avail- 
able for different heating conditions for various kinds 
of geometries and for a variety of fluids. However, 
very few studies have been carried out which dem- 
onstrate the effects of complex geometries on natural 
convection such as a wavy surface, which is frequently 
used in finned heat exchangers and heat transfer 
enhancement devices. Yao [11] proposed a simple 
transformation to transform a complex geometry into 
a simple shape for which the equations of natural 
convection can be solved by a numerical finite differ- 
ence method. The numerical results showed the fre- 
quency of the local heat transfer rate is twice that of 
the wavy surface. The steady-state laminar natural 
convection heat transfer of power-law non-New- 
tonian fluids along a wavy vertical plate was inves- 
tigated by Kin and Chen [12] with a transformation 
method. The effects of Prandtl number, the dimen- 
sionless amplitude of the wavy plate and non-New- 

tonian flow index were examined in detail. All these 
analyses and experimental studies considered only a 
fiat plate or simple two-dimensional bodies, and little 
has been done on non-Newtonian fluid heat transfer 
from a wavy surface imposed on a magnetic field. The 
action of a magnetic field on the fluid has many prac- 
tical applications, e.g. metals processing industry, 
including the control of liquid metals in continuous 
casting processes, plasma welding, nuclear industry and 
many others. Mathematical modeling of the magneto- 
hydrodynamics problems is particularly desirable. 

In this present study the steady-state laminar con- 
vection heat transfer of power-law non-Newtonian 
fluid along a wavy vertical plate under the effect of 
magnetic field is studied. The results of dimensionless 
velocity fields, temperature profiles and heat transfer 
are obtained for this considered case. The effects of 
the wavy geometry and the non-Newtonian nature of 
the fluids on the flow and heat transfer characteristics 
are examined in detail. 

ANALYSIS 

Electromagnetic concepts 
It is well-known that an electrical conductor moving 

in a magnetic field generates an electromotive force 
(e.m.f.) which is proportional to its speed of motion 
and the magnetic field's strength, H. The fluid has to 
be electrically conducting as in the case of liquid met- 
als or gases. The field of magnetohydrodynamics is 
complex for it involves the solution of both the Nav- 
ier-Stokes equations characterizing fluid flow and 
Maxwell's equations for the magnetic field. In mag- 
netofluidmechanics Maxwell's equations are pre- 
sented as follows: 
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B magnetic flux density 
(70 specific heat 
P electric displacement flux 
E electric field intensity 
Ec Eckert number  
Gr Grashof number 
H magnetic field strength 
J current density 
K thermal conductively 
M ~  Mg~-N~ I,2~2 ,,i 

Nu  Nusselt number 
Ng,. generalized Grashof  number 
P Pressure 
Pr Prandtl number 
Nor generalized Prandtl  number  
T temperature 
t time 
u, t, velocity components in (x,  y)  

directions 
* U, V dimensionless velocity 

components 

NOMENCLATURE 

.Y, Y 
X,Y  

coordinates 
dimensionless coordinates. 

Greek symbols 
amplitude of wave 

[4 thermal expansion coefficient 
l~ viscosity 
1~- magnetic permeability 
6 surface geometry function 
p density 
cr electrical conductivity 
r dimensionless time 
0 dimensionless temperature. 

Superscripts 
- dimensionless quantity 

derivative with respect to x. 

Subscripts 
w wall 
z free stream. 

V - B = 0  

V ' D = O  

V x H = J  

(?B 
V × E -  

(~t' 

The magnetic flux density B is expressed by 

B = tt~H 

D = ~:E 

(l) on a magnetic field. The physical model and coor- 
dinate system is shown in Fig. 1, where (u,v) are 

(2) velocity components in the ( x , y )  directions. The sur- 
(3) face of the plate is described by y = cS(x), where 6(x)  

is an arbitrary geometric function. The temperature 
(4) of the plate is held at a constant value Tw, which is 

higher than the ambient temperature T,I. In the pre- 
sent study, the electrically conducting fluids are 
assumed to be non-Newtonian fluids, with two-dimen- 

(5) sional incompressible flow, and the magnetic Rey- 
nolds number  is small. The properties of the fluids are (6) 

where J is the current density, ~ is the magnetic per- 
meability and E is the electric field intensity. By Ohm's 
law, the total current flow can be defined as 

J = 6 ( E +  V x B )  (7) 

where o = electrical conductivity. 
By combining the above equations, with H replaced 

by B/lze, we have 

?B 
?t = V × ( V x B ) + v m V 2 B  (8) 

where Vm = 1/Cr#~ 
In the momentum equation, we have to include the 

electromagnetic force, Fro, which is 

F~, = J x  B = or(V× B) × B. (9) 

Governing equat ions 

Consider a steady-state natural convection of non- 
Newtonian fluids along a wavy vertical plate imposed 

Isothermal  

Surface  g e o m e t r y  profile 

T~ 

)~ "Bo 
Magnetic field 

) 
~ y  

Fig. 1. Physical model and coordinate. 
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assumed to be constant, except for the density in the 
buoyancy force term. A magnetic field with a constant 
magnetic flux density, B0, is applied. In magneto- 
fluid mechanics, fluid motion is governed by the 
laws of  conservation of mass, momentum and energy. 
The equation of continuity remains unchanged. The 
momentum and energy equations must be modified 
from Maxwell's field equation and Ohm's law. Based 
on the above assumptions, the governing equations of 
continuity, momentum and energy for the steady-state 
natural convection of non-Newtonian fluids along a 
wavy vertical plate, including the magnetic field effect, 
are 

Ou ~?v 
~xx + ~y = 0 (10) 

otgU+u~xx + v ~  plOPax =.~S-.  ~7., / v \ ,~ .  + < ~ / l ( & ' : x  &..,'\ 

o-Bo ~ 
+gfl(T- T~)- u ( l l a )  

P 

8v dv dv 1 8P 1 [STyx ~T, yy~ 
+u~x +V~y P 8y 7~-x + 8y ] 

( l l b )  

aT+uaT+vaT = /a2T 82T\ (ra:o ~ 
7x + 8 7 )  + u 

(12) 

Prandtl's transposition theorem 
The first step is to transform the irregular wavy 

surface into a flat surface by use of Prandtl 's trans- 
position theorem, Yao [13]. The theorem is that the 
flow is displaced by the amount of the vertical dis- 
placement of an irregular solid surface, and the ver- 
tical component of the velocity is adjusted according 
to the slope of the surface. The form of the boundary- 
layer equations is invariant under the transformation, 
and the surface conditions can be applied on a trans- 
formed fiat surface. This allows the boundary con- 
ditions to be easily incorporated into any numerical 
method. In order to transform the above governing 
equations, the following dimensionless quantities are 
introduced : 

X 
= - (13a) 

1 

y = ~ N ~ [  2('+ ') (13b) 

U U 
a (13c) 

vX~ar u~ 

v- f 'u  v - f 'u  
_ Xl/z(.+o = Arl/2(,,+1) (13d) ~ ' ' g r  U ~  " ' g r  

d6 d~ 
6' - - 5 =  : (13e) 

dx d£ l 

P P 
1~ plgflAT- puZ (13f) 

T-T~ 
(13g) 

Tw-T~ 

p2l"+2[gflAT]2-" 
Xg r = m2 (13h) 

Np~ = D(~_/ ~r_p|m|2/l+n(l)(l_n,/(l+n)tlgflAT]3( n l ) / 2 ( l + n )  

k \p/  

(13i) 

where N v and Np~ are the generalized Grashof number 
and the generalized Prandtl number, respectively. By 
use of equation (10a), we transform the wavy surface 
into a flat surface. Neglecting the small order in Ngr, 
the governing equations are transformed to 

88 O~ 
+ fff = 0 (14) 

~ + a ~ + o ~  +6' i  '/:('+l)8p 
a~ gr Of 

,2 8 /I88"-~ 08 ,) 
/~[2  ~t/-- l*2(2--n)ff  (15) 

- -  - -~g  " ' g r  ~- 

3"82-~-3t0 6 '  *2 l /2 (n+  l)  (~p = - - ( 1 + 6  )Ng r ~ 

+6'Mg2N~l/2(2-")~ (16) 

~0 80 dO 1 820 
- = p r  (1 8y2 

+ a ~  +%~ +a'2) - 

q-M2EcG~I"2a 2 (17) 

where 

aB~pl/2-"l 2/z-" abel 2 
M~ - M 2 = (18) 

pm U2-n pv 

The transformed momentum equations (15) and 
(16) can be combined into one equation by neglecting 
the pressure gradient, and so, we have 

n + l  c~U OU 
- - n  U + [ 2 ( n +  1 ) X ] ~ -  Y ~  

+[2(n+l)X]("--1)(2"+l)/2"('+l)~=O (19) 

8U i c~U 
~-z + [2(n+ 1)X] /" U ~  + {[2(n + 1)X] (' -,,,2,,(,,+ ,)V 

-- [2(n+ 1)X] (I-')/'UY~ 8U "Tf 
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= ( l + &  '= ) ' { O - M ~ N ~  ''2~= ' " [2(n+I)XI '="U} 

I n +  [2(n l)X] <' ..... 
1 - + 

( n 

I . . . . .  1)X]I,,~U2 + ~-+--~i:2 ) 0 0 [2(n + 

(l ul" '-:) 
gO 

[ 2 ( n + l ) X ] "  1,=,,t,,~1,= 
~r 

+ [2(n+ I)X] (> '  " >'<" 
20 

) L "  

&g 

+ { V - [ 2 ( n + I ) X ]  ~ '÷=' ' '  , ,2, ,~,,+.,Uy}?y 

= Pr ' ( l + f ' = ) - -  ?y2 

(20) 

+ M 2 E c G r  ' : [2 (n+ I)X] I:''~ I,,,(,,, ~'L:: (21) 

where 

N U M E R I C A L  A N A L Y S I S  

The governing equations with the corresponding 
constant temperature boundary condition were solved 
by using the cubic sptine approximation method, 
Rubin and Graves [14]. The SADI  procedure was 
applied to perform the numerical computation.  Using 
the spline formulation, the natural convection bound- 
ary layer equation is written in the following form : 

where 

+~',+' = g ;  + G,;(m¢)~' / '  + So(M¢)~;  +' (27) 

(m@)f'/ \g  Y],, (28) 

\ #  y2 / , /  (29) 

and the functions o fF ,  G and S are shown in Table 1. 
In this study, the iteration process is continued until 

the convergence criterion, is achieved 

n ~ I n 

d)o ~@u < 10 4. (30) 
I *'Z,, I 

X = .2 (22a) 

Y = .9i[2(n + I)X] ~ ~{"+ ~ (22b) 

U = a/[2(n+ I)X] I =" (22c) 

V = [2(t1+ 1)X] ~ :~"+ ~g (22d) 

0 = 0 r = tT[2(n+l)Y] ~2'' (22e) 

with the corresponding boundary conditions, 

X = O  U = O = O  } 
Y = O U =  V = O ,q= 1 (23) 

Y ~  ~ U =  0 = O. (24) 

The local Nusselt number and the averaged Nusselt 
number can be determined by using Newton's  cooling 
law and Fourier 's  law, 

Nu,. = - -[Ng~/2(n+ l)X] = 2 .... "(1 +c5'2) ' - , . ,  
a~ I ,=,  

(25) 

1 I ~ Nu, = - ~ [N~,./2(n+ I)X]'  2~,,, ,, 
) 

-,2 dOI 
× ( l + O  )~?Y ~ odX  (26) 

where 

i' S =  [1 +(Y2]I e dx. 
) 

RESULTS A N D  D ISCUSSION 

In order to verify the numerical accuracy of the 
solution, numerical results were first obtained for the 
case o f a  Newtonian fluid (n = 1.0) with constant wall 
temperature and compared to those reported by Yao 
[11], as shown in Table 2. Table 2 shows a comparison 
of  the present calculation of  local Nusselt number 
with different grid number. The calculation solutions 
appear to be independent of  the grid number of the 
X-axis. The results agree well with grid number of  
y = 61. It also demonstrates that cubic spline approxi- 
mation saves much CPU time. The effects of  the mag- 
netic field parameter Mgr, the wavy geometry ~ and 
the power law index n on flow characteristics and heat 
transfer have been studied. 

Figure 2(a-c) represents the axial velocity dis- 
tribution with dimensionless amplitude of  wave 
~ .=0.0 ,  0.1 and 0.2, n =  1.2, 1.0 and 0.6 with 
P r =  10.0. The results agree with that obtained by 
Kim and Chen [12] for the case of  a power law fluid 
in the absence of  a magnetic field. With the increase 
of n, the maximum U increases, but the velocity 
boundary layer becomes thinner. The effect of  the 
dimensionless wave amplitude ~ on the velocity dis- 
tribution is presented, as ~ increased the maximum U 
decreases and the velocity boundary layer becomes 
slightly thicker. The effect of  n on the temperature 
distribution with c~ = 0.0, 0.1 and 0.2, Pr = 10.0 is 
presented in Figs. 3- 5. The dilatant fluid n = 1.2 has 
a thinner thermal boundary layer, but larger wall tem- 
perature gradient that the pseudoplastic fluid 
In = 0.6). For  a given fluid, the increase of  :~ tends to 
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Table 1. Function of F, G and S 
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r~ 

C~ 

F~ 

o, ~, 

l ' S '  '/" U k ~ - 0 L ~ ' + -  ~,y-[2(n+ ) ,1 i j ~ l a r  

• ' J  '~Az [2(n + 1)X~] ] -"/"U~Yj- V+. 
[2(n+ l)Xi](, wz.(.+L)j 

1 "4-6'i  2 A T  

Pr [2(n+ 1)Xi]<.- w2.<.+ n 

(V~ - -  [2(n + 1)X,]' "'" V~m V~ A'r Y/ 

+ ~ (0~0 _ Mf2N~I/z(2 .> [2(n + 1)Xi] 1/2. U~) 
1 +6'~ 

- U § 2 ( ~ - [ 2 ( n +  I)X~]'-"/° + ~ [ 2 ( n +  I)X]I/"~A'c 
1+6; ' / 

U k _ U k \ I 
[2tn~_l~X1L.,/rk ~/ i Lj A | / ( 1  [2(n4.1~Sdl  I n/ny i l k  A 

- -  t . . . .  ' ~([ ~ Z~/" -- . . . . . . . . .  in--o--Z, 

[2(n + 1)X,]' "/" U§ A z -  [2(n + 1)X,] ~' -")/2"<" +') V~ A'r r, 

m O  k n - I  k n 1 ,2 I , j I  - ImU,  j_,l +<1 +~, ) r,-Y- rU~, '  A~t/<I-t2<n + 1)X,I -°~" r, mV~ a~) 
i - -  l I / ,  

(1 + 6/2)imU~i,- i Az/(I - [2(n + 1)S,]' "/" Y~m U~ Az) 

Table 2. Comparison with the results of Yao [11] for different 
grid number 

Grid number 41 * 41 41 * 46 41 * 81 41 * 101 

Local Nusselt 0.5693 0.5672 0.5662 0.5656 
number 

Grid number 61.41 61.61 61.81 61.101 
Local Nusselt 0.5693 0.5673 0.5662 0.5657 

number 
Grid number 81.41 81 * 61 81 * 81 81 * 101 
Local Nusselt 0.5694 0.5673 0.5663 0.5657 

number 
Gridnumber 101.41 t01 .61  101.81 101,101 
Local Nusselt 0.5694 0.5674 0.5664 0.5658 

number 
Yao [11] 161 • 501 
Local Nusselt 0.5671 (X = 2.0) 

number Pr = 1.0, M~r = 0.0 
ct = 0.0, n = 1.0 

X =  4.0, Y =  10.0 

thicken the thermal  bounda ry  layer and  retard the 
heat  t ransfer  rate at  the wall surface. The present  
calculat ions in the absence of  a magnet ic  field are in 
good agreement  with  the results of  Yao [11] and  K i m 
and  Chen  [12]. Therefore,  the present  results should  
have a relatively h igh degree of  accuracy, a l though  
no  available exact results can be compared  with the 
present  results when  Msr = 0.0. 

The influence of  the wave ampl i tude  on  the flow 

and  heat  t ransfer  characterist ics is examined as shown 
in Figs. 6-8  with cons tan t  magnet ic  s t rength  M ~  = 1.0 
for Pr = 0.1 and  n = 1.2 and  0.8. Increasing the wave 
ampl i tude  ~ f rom 0 to 0.2 will decrease the axial vel- 
ocity and  increase the var ia t ion  of  normal  velocity. 
Fo r  a given fluid, the increase of  ~ tends to thicken 
the velocity bounda ry  layer and  thermal  bounda ry  
layer. The waviness of  the plate reduces the local Nus-  
selt number .  The effect of  magnet ic  field s t rength is 
presented in Figs. 9-11. As the magnet ic  field s t rength 
increases, as indicated by an  increasing Mgr, the tem- 
pera ture  of  the fluid increases, bu t  the velocity 
decreases. It  also takes longer to reach the steady- 
state. Figures 12-14 display the effect of  Prand t l  num-  
ber  on the velocity, as well as the t empera ture  dis- 
t r ibut ion.  Wi th  increasing Prand t l  number ,  the axial 
velocity and  tempera ture  decrease. 

The numerical  results are presented for 
& = ~ sin(2nx) to demons t ra te  the advantage  of  the 
t r ans fo rmat ion  method.  The velocity and  tempera ture  
of  the node,  t rough  and  crest are plot ted for ~ = 0.1 
in Figs. 15-17. The  node  of  the wave is a t  x = 1.0, 
while x = 0.75 is the t rough  and  x = 1.25 is the crest. 
The velocity profile at  the t rough  and  the crest differs 
only slightly. It  is clear tha t  the b o u n d a r y  layer is 
thicker near  the nodes  than  near  the t rough  and  the 
crest. The  tempera ture  gradient  has  to be corrected 
by the local curvature  before the heat  t ransfer  rate can 
be calculated, since the y-direct ion is no t  normal  to 
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Pr = 10.0 
a = 0 . 0  
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1.0 
0.6 

• • Kim (steady state) 

. . . . . .  

0 2 4 6 8 10 
(a) Y (X = 1.0, Mgr = 0.0) 

0.20 

0.15 

0.10 

0.05 

0 
0 

(b) 

0.20 

0.15 

= 0.10 

Pr= 10.0 
a=O.O 
n = l . 2  

1.0 
. . . . . . . .  0.6 
o • • Kim (steady state) 

~ ~ t ' ~ A  ~.. .  " O ' ' "  O " ' O  . . . .  
I "T---.¢~_ A ~ • _  I 
2 4 6 8 10 

Y (X = 1.0, Mgr = 0.0) 

Pr = 10.0 
o~ = 0.0 
n = l . 2  

1.0 
. . . . . . . .  0.6 
o • • Kim (steady state) 

c ' x ,  

t Q . . O  • • 

0 I I ~ q,,,,,~ , _ ~ , ~  | ~ A  
0 2 4 6 8 10 

(c) Y (X = 1.0, Mgr = 0.0) 

Fig. 2. (a) Dimensionless axial velocity distribution 7 = 0.0, 
(b) dimensionless axial velocity distribution for c~ = 0.1. (c) 

dimensionless axial velocity distribution for ~ = 0.2. 

the  w a v y  sur face .  T h e  a v e r a g e d  N u s s e l t  n u m b e r  dis-  

t r i bu t i on  for  the  case  o f  a flat p la te  (~ = 0) a n d  the  

w a v y  su r faces  for  n =  1.2 a n d  P r = O . 1  a n d  10 is 

s h o w n  in Fig. 18(a, b). It  is seen  t h a t  the  wav i ne s s  o f  

the  p la te  r educes  the  a v e r a g e d  local  N u s s e l t  n u m b e r .  

1.0• 
Pr=  10.0 
ct = 0.0 
n = l . 2  

0.8 1.0 
. . . . . . . .  0.6 

0.6 ~ o • Kim (steady state) 

r o 

0.4 ~ •  

0.2 

0 •_ I 
2 

Y (X = 1.0, Mgr = 0.0) 

Fig. 3. Dimensionless temperature distribution at X = 1 and 
:~ = 0.0. 

1.0 e. 
- ~ e  Pr = 10.0 

~ = 0 . 0  
n =  1.2 

0.8 1.0 
~ ,  . . . . . . . .  0.6 

, o • Kim (steady state) 

0.4 0.6 ~ , ~ * * *  ',*, 

• " 0  

0.2 - " ~ _  

0 1 2 
Y (X = 1.0, Mgr = 0.0) 

Fig. 4. Dimensionless temperature distributed at X = 1 and 
~ =0 .1 .  

1.0e 
~. Pr= I0.0 
"~o O~ = 0.0 

~'x, n = 1.2 
0.8 k~,. 1.0 

~ ,  . . . . . . . .  0.6 
~ ' e  o • Kim (steady state) 

0.6 " ~ \ ' o  

0.4 

X,\": I 

0 1 2 3 
Y (X = 1.0, Mgr = 0.0) 

Fig. 5. Dimensionless temperature distribution at X = 1 and 
= 0.2. 
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Fig. 6. Axial velocity distr ibution for different wave ampli- 
tude (n = 1.2 and 0.8). 

Pr--0.1 
Mgr = 1.0 

n = 0 . 8  

_ ~ = 0  
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I I I I 
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Y (X = 1.0, steady state) 
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Mgr = 1.0 
= 1.2 

0 

-1 

;> 
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0.1 

-4 I I I I 0.2 
0 4 8 12 16 20 

Y (X = 1.0, steady state) 

Fig. 7. No rma l  velocity distr ibution for  different wave ampli- 
tude (n = 1.2 and 0.8). 
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Fig.  8. D imens ion le s s  t e m p e r a t u r e  d i s t r i bu t ion  for  different  
wave  a m p l i t u d e  (n = 1.2 a n d  0.8).  

0.50 

0.40 

0 .30  

0.20 ; 

0.10 

0 
0 

M g r  = 0 

I I I 
4 8 12 

Y (X = 1.0, s teady state) 

P r = 0 . 1  
et = 0 . 1  
n =  1.2 

I 
16 20 

0.40 
Pr = 0 . 1  
o~= 0.1 
n = 0 . 8  M g r = O  

0.30 
3.5 

= 0.20 

O.lO 

0 I I I 
0 4 8 12 16 20 

Y (X = 1.0, s teady state) 

Fig. 9. Axia l  veloci ty  d i s t r i bu t i on  for  d i f ferent  m a g n e t i c  
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C O N C L U S I O N S  

The main conclusions of  this study are : 
(1) The use of  Prandt l  t ransformat ion method  can 

t ransform the Navier-Stokes  equations into a bound-  
ary layer equation. It also can solve the problem due 
to the complexity of  the boundary.  

(2) The present prediction demonstrates  that  this 
problem can be solved effectively by using cubic spline 
approximation.  

(3) The averaged heat transfer coefficient for a 
wavy surface is smaller than that  o f  the corresponding 
flat plate. The total heat transfer rate for a wavy 
surface is about  the same as that  o f  a flat plate for 
considering larger heat transfer area. 

(4) The temperature of  flow increases, but 
decreases the velocity in the presence of  magnetic field. 
The magnetic field can therefore be used to control  
the flow characteristics. 
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